ESPECIFICAÇÕES TÉCNICAS DAS INSTALAÇÕES ELÉTRICAS DE SUBESTAÇÃO DE 112,5 KVA, PARA ATENDER AO RESTAURANTE DO TRIBUNAL DE JUSTIÇA DO ACRE.

INTRODUÇÃO

O presente memorial enfoca o Projeto de Instalações Elétricas de subestação de 112,5 kVA. Este memorial faz parte integrante do Projeto e tem o objetivo de nortear e complementar os elementos contidos no projeto gráfico e especificações visando assim o perfeito entendimento das instalações projetadas.

Qualquer modificação que eventualmente se torne necessária só poderá ser executada após prévia autorização da fiscalização. Tais modificações deverão ser cadastradas e indicadas nos desenhos específicos, sendo de responsabilidade da contratada a apresentação de um "As-Built" ao final da execução dos serviços.

NORMAS E ESPECIFICAÇÕES

Para o desenvolvimento das soluções apresentadas foram seguidas as seguintes diretrizes:

- ABNT Associação Brasileira de Normas Técnicas NBR-5410 e NR-10.
- ELETROBRAS Distribuição Acre
- Plantas de Arquitetura fornecidas.

ESPECIFICAÇÃO TÉCNICA DOS SERVIÇOS

1 ELÉTRICA CONVENCIONAL:

1.1 Serviços Gerais:

Competirá à Contratada a apresentação de ART de execução dos serviços elétricos e afins de obtenção de licenças, junto à Concessionária de Energia Local – ELETROBRAS – Distribuição Acre.

1.2 - TRANSFORMADOR

Será instalado 1 (um) transformador Trifásico de 112,5 kVA, tipo distribuição, classe 13,8 kv ,ligação triângulo/estrela 230/127v, frequência de 60 Hz, refrigeração em óleo isolante e neutro solidamente aterrado.

1.3 - Eletroduto

A descida do cabo de baixa tensão do transformador para 0 disjuntor Geral, será em eletroduto de 4" galvanizado.

1.4 - MURETA

A mureta será em alvenaria, com suas dimensões de 2,0x2,0 x 0,40)m.

1.5- Disjuntor Geral

Disjuntor termomagnético tripolar de 300A

1.6 - QGBT:

O QGBT terá disjuntor geral de 300 A.

Alimentado por cabo de 2x70mm² nas fases e 2x35mm², oriundos da subestação projetada.

1.7 Alimentadores de Energia:

Os alimentadores de energia de baixa tensão (120/230V) será para 1 kV e para a média tensão (13,8 kV) será com isolação XLPE de fabricação Pirelli ou similar.

1.8 - Aterramento

A malha de aterramento deverá possuir uma resistividade máxima de 5 OHMS, caso a resistência não seja alcançada dever-se-á induzir ao valor esperado utilizando-se de métodos de tratamento de solo, através de elementos químicos de efeito permanente.

RECOMENDAÇÕES GERAIS

Os barramentos de neutro dos quadros deverão ser isolados da carcaça através de isoladores de epóxi.

Deverão ser aterradas todas as carcaças metálicas: caixas, etc.

A ligação dos condutores aos quadros e tomadas deverá ser através de terminais préisolados adequados à bitola dos cabos.

Todos os circuitos de energia serão identificados em ambas as extremidades dos condutores.

ESPECIFICAÇÕES TÉCNICAS DE MATERIAIS

As especificações de materiais e equipamentos abaixo deverão ser adotadas e qualquer alteração deverá ser comunicada previamente ao banco.

Disjuntores

Aparelhos com disparadores magneto-térmicos para a proteção de instalações e aparelhos elétricos, contra sobrecargas e curto-circuitos, fabricados com faixas de atuações diferenciadas (curvas características), que atendam a proteção de equipamentos e a proteção de circuitos.

Cabos de cobre isolados

Condutores unipolares, tensão de isolamento de e 1 kV, temperatura máxima(s) do(s) condutores de 70°C/90°C em serviços contínuo, 130°C em sobrecarga e 250°C em curtocircuito, constituídos de, cobre eletrolítico, tempera mole, nú (não estanhado), encordoamento classe 2, redondo normal (sessões 2,5 mm2 a 6mm2 inclusive) e redondo compactado (sessões 10mm2 a 500mm2 inclusive); Cobertura em camada extrudada de composto termoplástico de cloreto de polivinila (PVC) ou borracha etileno-propileno (EPR), dependendo de cada caso. Fabricação Pirelli ou equivalente. Obedecer ao código de cores da ABNT e Usar cabos flexíveis em todas as aplicações.

Haste de aterramento

haste de aterramento cobreada 5/8x2,89m ih-1058 (intelli ou similar), núcleo de aço carbono ABNT 1010 a 1020 trefilado com revestimento de cobre eletrolítico com no mínimo 95% de pureza e sem traços de zinco.

Serviços Finais:

Identificar todos os elementos do sistema elétrico, com etiquetas de longa durabilidade, anilhas e etc.

A empresa deverá realizar medições através de terrômetro para obtenção da resistência de terra equivalente da malha de aterramento existente, e posteriormente, emissão de relatório, para ser entregue ao fiscal.

Retirar todo o material (infra-estrutura) atual (cabeamento, eletrodutos, tomadas e etc. antigos e em desuso).

Quaisquer serviços que deverão ser solicitados junto à concessionária local, tais como desligamento e ligamento definitivo, serão de inteira responsabilidade da contratada.

Rio Branco, AC – 20 de maio de 2016.

Aluizio Antonio Veras Eng. Eletricista e de Seg. no Trabalho CREA-AC 6611/D